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Abstract. We discuss the evolution of the fluctuations in a symmetric φc-exponential potential which
provides a power-law expansion during inflation using both the gauge-invariant field Φ and the Sasaki–
Mukhanov field.

1 Introduction and motivation

It is now widely accepted that the dominant cause of struc-
ture in the Universe is a spatial perturbation. This per-
turbation is present on cosmological scales a few Hubble
times before these scales enter the horizon, at which stage
it is time-independent with an almost flat spectrum. One
of the main objectives of theoretical cosmology is to un-
derstand its origin [1]. The usual assumption is that the
curvature perturbation originates during inflation of the
slow-rolling inflaton field. As cosmological scales leave the
horizon, the quantum fluctuation is converted to a classical
gaussian perturbation with an almost flat spectrum, gen-
erating immediately the required curvature perturbation
which is constant until the approach of horizon entry [2].
This idea has the advantage that the prediction for the
spectrum is independent of what goes on between the end
of inflation and horizon entry. The spectrum depends only
on the form of the potential and on the theory of grav-
ity during inflation, providing, therefore, a direct probe of
conditions during this era.

Stochastic inflation has played an important role in in-
flationary cosmology in the last two decades. It proposes
to describe the dynamics of this quantum field on the ba-
sis of two pieces: the homogeneous and inhomogeneous
components [3–10]. Usually the homogeneous one is in-
terpreted as a classical field φc(t) that arises from the
vacuum expectation value of the quantum field. The in-
homogeneous components φ(x, t) are the quantum fluctu-
ations. The field that takes into account only the modes
with wavelengths larger than the now observable universe
is called a coarse-grained field and its dynamics is described
by a second-order stochastic equation [10,11]. Since these
perturbations are classical on super Hubble scales, in this
sector one can make a standard stochastic treatment for
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the coarse-grained matter field [10]. The IR sector is very
important, because the spatially inhomogeneities in super
Hubble inflationary scales would explain the present day
observed matter structure in the universe.

In this work we consider gauge-invariant fluctuations
of the metric in the early inflationary universe [2]. Metric
fluctuations are here considered in the framework of linear
perturbative corrections. The scalar metric perturbations
are spin-zero projections of the graviton, which only exists
in non-vacuum cosmologies. The issue of gauge invariance
becomes critical when we attempt to analyze how the scalar
metric perturbations produced in the early universe influ-
ence a background globally flat isotropic and homogeneous
universe. This allows us to formulate the problem of the am-
plitude for the scalar metric perturbations on the evolution
of the background Friedmann–Robertson–Walker (FRW)
universe in a coordinate-independent manner at every mo-
ment in time. On the other hand, the Sasaki–Mukhanov
(SM) field takes into account both: metric and inflaton
fluctuations [12]. One of the aims of this work is the study
of the evolution of the SM field during inflation to make a
comparison with gauge-invariant metric fluctuations.

2 Fluctuations

Matter field fluctuations are responsible for metric fluctu-
ations around the background FRW metric. When these
metric fluctuations do not depend on the gauge, the per-
turbed globally flat isotropic and homogeneous universe is
described by [2]

ds2 = (1 + 2ψ) dt2 − a2(t)(1 − 2Φ) dx2, (1)

where a is the scale factor of the universe and (ψ, Φ) are
the gauge-invariant perturbations of the metric. In the
particular casewhere the tensorTαβ is diagonal, one obtains
Φ = ψ [2]. We consider a semiclassical expansion for the
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inflaton field ϕ(x, t) = φc(t)+φ(x, t) [10], with expectation
values 〈0|ϕ|0〉 = φc(t) and 〈0|φ|0〉 = 0. Here, |0〉 is the
vacuum state. Due to 〈0|Φ|0〉 = 0, the expectation value of
the metric (1) gives the background metric that describes
a flat FRW spacetime:

〈
ds2
〉

= dt2 − a2dx2.
After linearizing the Einstein equations in terms of φ

and Φ, one obtains

Φ̈+

(
H − 2

φ̈c

φ̇c

)
Φ̇− 1

a2 ∇2Φ

+2

(
Ḣ −H

φ̈c

φ̇c

)
Φ = 0, (2)

1
a

d
dt

(aΦ),β =
4π
M2

P

(
φ̇cφ
)

,β
, (3)

φ̈+ 3Hφ̇− 1
a2 ∇2φ+ V ′′(φc)φ

+2V ′(φc)Φ− 4φ̇cΦ̇ = 0, (4)

where β = 0, 1, 2, 3, a is the scale factor of the universe
and the prime denotes the derivative with respect to φc.
The dynamics of φc is given by the equations

φ̈c + 3Hφ̇c + V ′(φc) = 0, φ̇c = −M2
P

4π
H ′, (5)

and H = ȧ/a is the Hubble parameter. Furthermore, the
scalar potential can be written in terms of the Hubble pa-
rameter:

V (φc) =
3M2

P

8π

[
H2 − M2

P

12π
(H ′)2

]
. (6)

Equation (2) can be simplified by introducing the field
Q = e1/2

∫
[H−2φ̈c/φc]dtΦ,

Q̈− 1
a2 ∇2Q−


1

4

(
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1
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− 2

(
Ḣ −H

φ̈c

φ̇c

)Q = 0.

This field can be expanded in terms of the modes Qk =
eik.xξk(t):

Q(x, t) =
1

(2π)3/2

∫
d3k
[
αkQk(x, t) + α†

kQ
∗
k(x, t)

]
, (8)

whereαk andα†
k are the annihilation and creation operators

that comply with the commutation relations[
αk, α

†
k′

]
= δ(3)(k − k′), (9)

[αk, αk′ ] =
[
α†

k, α
†
k′

]
= 0. (10)

The equation for the modes Qk is

Q̈k + ω2
k(t) Qk = 0, (11)

where ω2
k = a−2

(
k2 − k2

0
)

is the squared time-dependent
frequency and k0 separates the infrared and ultraviolet
sectors and is given by

k2
0

a2 =
1
4

(
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φ̈c

φ̇c

)2

+
1
2

[
Ḣ − 2

d
dt

(
φ̈c

φ̇c
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−2

(
Ḣ −H

φ̈c

φ̇c

)
. (12)

Since the field Q satisfies a Klein–Gordon-like equation on
a FRW background metric,

〈
ds2
〉

= dt2 − a2dx2, it also
satisfies the commutation relation[

Q(x, t)Q̇(x′, t)
]

= iδ(3) (x − x′) . (13)

This implies that the modesQk are renormalized by the ex-
pression

Q̇∗
kQk − Q̇kQ

∗
k = i. (14)

2.1 Particular solutions

If the inflaton field oscillates around the minimum of the
potential at the end of inflation the particular solutions
when φ̇c = 0 and φ̈c = 0 are very important.

On the points φ̇c = 0 we obtain Qk = 0. However, the
solutions for Φk are non-zero:

Φk = a−1φ0
k, (15)

where φ0
k is the initial amplitude for Φk, for each wavenum-

ber k. This means that the amplitude of each mode de-
creases exponentially with time.

Another interesting particular solution is located at the
points φ̈c = 0, when the field is at the minumum of the
potential. In these points (11) adopts the form

Q̈k +
[
k2

a2 −
(
H2

4
− 3

2
Ḣ

)]
Qk = 0, (16)

where Φk = a−1/2Qk.

2.2 The Sasaki–Mukhanov field

A manner to study both, metric and inflaton fluctuations,
can be made by means of the SM field [12]: S = φ+ φ̇c

Hc
Φ.

The modes of this field obey the following equation:

S̈k(t)+3HṠk(t)+

[
k2

a2 + V ′′ + 2
d
dt

(
Ḣ

H
+ 3H

)]
Sk(t) = 0,

(17)
where the modes Sk comply with the renormalization con-
dition

Ṡ∗
kSk − ṠkS

∗
k =

i
a3 , (18)

so that
[
S(x, t), Ṡ(x′, t)

]
= i

a3 δ
(3)(x − x′).
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2.3 Power spectrum

One can estimate the power spectrum of the fluctuations
for the fields Φ and S. The spectrum of the fluctuations
for Φ is

PΦ =
k3

3π2 |Φk(t)|2 , (19)

whilst the power spectrum for the SM field is the same as
that of the inflation field:

PS =
k3

2π2 |Sk(t)|2 . (20)

It is well known from the experimental data [13] that the
universe has a scale invariant power spectrum on cosmo-
logical scales.

3 An example.
Symmetric exponential φc-potential:
power-law inflation

As a first example we consider a scalar potential given by
V (φc) = V0 e2α|φc|, where α2 = 4π

M2
Pp

gives the relation
between α and the power of the expansion p. This po-
tential is related to a scale factor that evolves as a ∼ tp

(with constant power p), which corresponds to a Hubble
parameter H(t) = p/t, which can be written in terms of
the scalar field

Hc =
π
MP

(
32V0

12π − α2M2
P

)1/2

eα|φc|, (21)

where V0 = 3M2
P

8π H2
e

[
12π−M2

Pα2

12π

]
and He = p/te is the

value of the Hubble parameter at the end of inflation. The
temporal evolution for |φc(t)| is given by

|φc(t)| = |φ0| − 1
α

ln
(
t

t0

)
, (22)

where t ≥ t0. Since φ̇c = −sgn(φc) 1
αt and φ̈c = sgn(φc) 1

αt2

(we assume sgn(φc) = ±1 for φc positive and negative,
respectively), the equation that describes the evolution for
Φ results:

Φ̈+
(p+ 2)

t
Φ̇− 1

a2 ∇2Φ = 0. (23)

After we make the transformation Q = Φe
∫

(p+2)t−1dt, we
obtain the differential equation for Q:

Q̈− 1
a2 ∇2Q−

[p
2

(p
2

+ 1
)
t−2
]
Q = 0. (24)

The general solution for the modes Qk(t) is

Qk(t) = C1

√
t

t0
H(1)

ν1
[x(t)] + C2

√
t

t0
H(2)

ν1
[x(t)], (25)

where (C1, C2) are constants, (H(1)
ν1 [x], H(2)

ν1 [x]) are the
Hankel functions of the first and second kind, with x(t) =

tp
ok

a0(p−1)tp−1 and ν1 = p+1
2(p−1) . Using the renormalization

condition Q̇∗
kQk − Q̇kQ

∗
k = i, we obtain the Bunch–Davis

vacuum [14] solution (C1 = 0, C2 =
√

π
2(p−1) ),

Qk(t) =
√

π
2

√
t

t0(p− 1)
H(2)

ν1
[x(t)]. (26)

In the UV sector the function H(2)
ν1 [x] adopts the asymptotic

expression (i.e., for x � 1)

H(2)
ν1

[x] �
√

2
πx

[cos (x− ν1π/2 − π/4)

− i sin (x− ν1π/2 − π/4)] , (27)

whilst on the IR sector (i.e., for x � 1) it tends asymptot-
ically to

H(2)
ν1

[x] � 1
Γ (ν1 + 1)

(x
2

)ν1 − i
π
Γ (ν1)

(x
2

)−ν1

. (28)

The Φ-squared field fluctuations on the IR sector are(〈
Φ2
〉)

IR = 1
2π2

∫ εk0(t)
0 dkk2 |Φk|2, and become

(〈
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IR

� 1
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t3−2ν1 ,

where ε = k
(IR)
max/kP � 1 is a dimensionless constant,

k
(IR)
max = k0(t∗) at the moment t∗ of the horizon entry, and kP

is the Planckian wavenumber (i.e., the scale we choose as a
cut-off of the whole spectrum). The power spectrum on the
IR sector is PΦ|IR ∼ k3−2ν1 . Note that

(〈
Φ2
〉)

IR increases
for p > 2, so that to have the IR squared Φ-fluctuations re-
main almost constant on cosmological scales we need p � 2.
We find that a power close to p = 2 gives us a scale invariant
power spectrum (i.e., with ν1 � 3/2 for

(〈
Φ2
〉)

IR. Further-
more, density fluctuations for the matter energy density
are given by δρ/ρ = −2Φ, so that

〈
δρ2
〉1/2

/ 〈ρ〉 ∼ 〈Φ2
〉1/2.

On the other hand, in the UV sector these fluctuations
are given by

(〈
Φ2〉)

UV � a0

4tp+1
0 π2

{
k2
P

t2
− a2

0

t2p

[p
2

(p
2

+ 1
)]}

t3−2ν1 .

(30)
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The power spectrum in this sector goes as PΦ|UV ∼ k4.
We observe from (30) that

(〈
Φ2
〉)

UV increases during in-
flation for p > 3. From the results (29) and (30) we ob-
tain 1 < p ≤ 2, because a power-law p > 2 could give a
very inhomogeneous universe on cosmological scales. Since(〈
Φ2
〉)

UV ≥ 0, we obtain the condition

k2
P − a2

0

t2(p−1)

[p
2

(p
2

+ 1
)]

≥ 0. (31)

If a0 = H−1
0 (H0 is the initial value of the Hubble param-

eter), inflation should end at t = te, where

te �

 kPH0√

p
2

(
p
2 + 1

)



1
p−1

. (32)

For example, for kPH0 = 1011 MP and p = 2, we obtain
te � 5.8 1010 M−1

P .
Now we can study the evolution of the SM field fluctu-

ations
〈
S2
〉
. Equation (17) written explicitly for the model

we are studying is

S̈k + 3pt−1Ṡk + (kH0)
2
(
t0
t

)2p

Sk = 0. (33)

Note that the last term inside the brackets in (17) becomes
null. The general solution of (32) can be written in terms
of the Hankel functions

Sk(t) = A

(
t

t0

) 1
2 (1−3p))

H(1)
ν2

[
kH0t

p
0t

1−p

p− 1

]
(34)

+B
(
t

t0

) 1
2 (1−3p))

H(2)
ν2

[
kH0t

p
0t

1−p

p− 1

]
,

where ν2 = (3p−1)
2(p−1) . Ifwe adopt theBuch–Davis vacuum [14]:

A = 0, B =
√

π
2(p−1) , we obtain

Sk(t) =

√
πt1−3p

2(p− 1)t1−3p
0

H(2)
ν2

[
kHet

p
0t

1−p

p− 1

]
. (35)

The power spectra in the extreme sectors of the spectrum
go as

PS |UV ∼ k4, (36)

PS |IR ∼ k3−2ν2 . (37)

Note that PS |IR is scale invariant for ν2 = 3/2, which
corresponds with p → ∞. The squared S-fluctuations on
both the UV and IR sectors are

(〈
S2〉)

UV � t−2t0
4π2H3

e
(38)

×
[
k2
PH

2
e

(
t0
t

)2p

t2 −
(

9
4
p2 − 15

2
p+ 2

)]
,

(〈
S2〉)

IR � Γ 2(ν2)H−3
e ε3−2ν2

( 9
4p

2 − 15
2 p+ 2

) 3−2ν2
2

8π3(p− 1)1−2ν2(3 − 2ν2)t0
t−2.

(39)

Since
(〈
S2
〉)

UV ≥ 0 during inflation, from (38) we obtain
the condition[

k2
PH

2
e

(
t0
t

)2p

t2 −
(

9
4
p2 − 15

2
p+ 2

)]
≥ 0. (40)

From this condition we obtain the time at which inflation
ends. Hence, one obtains

te �

 kPHe√

9
4p

2 − 15
2 p+ 2




1
p−1

, (41)

where, since we require 9
4p

2 − 15
2 p+ 2 ≥ 0, p ≥ 3.04 must

hold. For example, for p = 4 and kPHe = 1011 MP, one
obtains te � 2.8 103 M−1

P , which is incompatible with the
value obtained from the evolution for Φ. On the other hand(〈
S2
〉)

IR decreases as t−2 independently on the value of
the power p.

4 Final comments

In this paper we have studied the evolution of the fluctua-
tions in a symmetric φc-exponential potential which pro-
vides a power-law expansion using both the gauge-invariant
field Φ and the Sasaki–Mukhanov field. This latter field
takes into account simultaneously the inflaton and met-
ric fluctuations. The results obtained from the evolution
of
(〈
Φ2
〉)

and
(〈
S2
〉)

are different in both treatments.
The reason can be explained from the fact that the field
S = φ + φ̇c

H Φ is not gauge invariant and hence does not
describe correctly the fluctuations for φ and Φ. The fluc-
tuations are well described by the field Φ which is gauge
invariant and predicts a scale invariant power spectrum on
the IR sector for p → 2. Note that we have not consid-
ered back-reaction effects which are related to second-order
metric tensor fluctuations. This topic was considered by
Abramo and Nambu, who investigated a renormalization-
group method for an inflationary universe [15, 16]. A dif-
ferent approach to describe the metric fluctuations was
considered more recently by Lyth and Wands [17] (see
also [18]), who suggested that a curvature perturbation
could be generated by a light scalar field named the cur-
vaton.
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